本文是网站小编coco给大家分享关于真假分数的教学反思6篇的范文,文章可能有点长,但是希望大家可以阅读完,增长自己的知识,最重要的是希望对各位有所帮助,可以解决了您的问题,不要忘了收藏本站喔。
对于教师来说,写一份实用的教学反思是很有必要的,高质量的教学反思是需要结合实际的教学能力的,下面是尚华范文网小编为您分享的真假分数的教学反思6篇,感谢您的参阅。

真假分数的教学反思篇1
学生在三年级已有了初步认识分数的经验基础,但那时主要是从部分与整体的关系角度来学习的,认识的分数都是真分数,而现在,引入了假分数,这就需要学生打破原有的认知结构。但又因真分数在学生心中根深蒂固,而假分数表示什么?在单位“1”不够取的时候怎样理解?在生活中假分数又有怎样的现实意义,学生并不明白。因此,建构对假分数意义的理解是个关键,同时也是难点。教学中引导学生“经历”“感受”和“体验”概念的建立,结论的探索过程显得尤为重要。这一课的教学是在学生学习了分数的意义、分数与除法的关系、比较分数的大小等知识的基础上进行的。
分数教学有两个最基本的概念,一个是分数的意义,一个是分数的单位。学生在理解的基础上掌握了这两个概念,学习分数就可以举一反三。因此在教学真分数和假分数时,我紧紧抓住每个分数的意义,使学生从分数意义上理解和掌握新课的内容。在教学过程中,我首先通过复习分数的意义,每个真分数的意义,为学生学习真分数、假分数和带分数奠定基础。在出示假分数时先回答分数的分数单位及有几个这样的分数分数单位等内容,使假分数的意义的难点建立在已有知识的基础上,并设计了从33到由学生自己用图表示4个13,学生对假分数的意义就很自然地理解了。
这一环节的设计,是我在经过两次失败的教学后认真反思自己的教学设计及行为,认真解读教材,认真的从学生的角度出发去思考改进的。
第一次我是这样设计的.,我课前预设到学生在表示84时会出现问题,课上学生有说是88的有说是44的还有说是2的等等,而我简单的把它定位到是44+44得来的。接下来的内容学生虽然很顺利的沿袭了刚才的模式,但对于假分数的意义并没有真正的理解。
有了第一次的经验,我觉得这里出问题是学生对单位“1”理解的不正确,于是做了如下调整。针对单位“1”的不同做了对比,结果是使学生更加混乱。
经过两次的失败我深深地认识到学生对分数的理解根本在于两个最基本的概念,一个是分数的意义,一个是分数的单位。学生在理解的基础上掌握了这两个概念,才能更清晰地去认识假分数和带分数。所有才有了今天这节课上从分析13的分数单位及个数过渡到学生自己用图来表示43,学生理解63、115更是水到渠成。在这里我并没有用课件直接给出43的图形而是让学生自己用图来表示,利用学生生成的资源为讲授的内容使内容更真实,更便于学生理解,也更具多样性。
在练习的使用和反馈上我想怎样才能更加有实效,于是我把判断和写分数印成片子发给学生,判断题要求学生判断并改正,在学生使用中发现学生修改形式很多,于是我精心挑选了典型的让他们来展台展示,并向学生渗透了数学方法的简洁性、针对性。这样学生不仅进行了练习,深化了对知识的理解,同时还对学生进行了数学思想的渗透,最大化的发挥了这个教学环节的效用。
在假分数的教学上,我考虑要充分发挥教师主导和学生主体的作用,通过把5个圆片平均分给4个同学,用提问的方式启发学生思考怎样分,让学生合作探究实际分,从不同的结果中提炼出假分数和带分数,并自然的理解了假分数和带分数的关系,理解了带分数的意义是一个整数和一个真分数合成的数,也为后面的试一试找到了知识根源。
本节课自始自终都使学生在充分的信息的相互交织中、不同思路的相互促进中、自育与他育的相互补充中,充分感受与体验知识的发生和发展过程,促进学生的全面发展。
真假分数的教学反思篇2
今天教研组活动,我执教了《真分数和假分数》一课,上完课我和学生都觉很快乐,学生的探究意识和探究能力着实让我开心和兴奋。
本课我主要采用自主探究、合作交流的教学方法,在教学中为学生提供充分的探索与交流的时间,让学生在观察、操作、分类、比较、交流等活动中,自己概括出真分数和假分数的意义。因为真分数和假分数是一节概念教学课,概念的形成是认识的发展过程。在教学真分数和假分数时,首先,放手让学生自主探究涂色表示分母是4的.分数,重点在表示4/5上,再通过比较分数的分子和分母的大小和引导观察图形的涂色部分,以及学生根据分数的意义理解假分数与真分数的内在联系,对这些分数进行分类、比较,并在小组中交流自己的想法,从而形成表象,进而以归纳的方式抽象出真分数和假分数的本质属性,理解概念,牢固地掌握概念,正确地运用概念。同时学生通过自主探索与合作交流,提升了思维水平,提高抽象、概括等能力,而在整个教学过程中教师只是个学习的组织者、引导者与合作者。从学生练习反馈来说,学生对真分数和假分数意义掌握不错,能正确区分真分数和假分数,从而达到这节课的目标。
除了为学生的探究意识和能力而欣慰。同时也对本节课进行了反思,有一下三点遗憾:
1.表示4/5时,理解假分数的单位“1”时,1个单位“1”无能为力时,需要2个单位“1”,课前孩子们准备的圆形纸片一样大,单位“1”大小一样,但为了进一步理解,我课前准备了不同大小的单位“1”,进行辨析,加深认识,但课中忘记了这一环节。
2.课有前松后紧的现象,练习的较少。可能是孩子们动手操作较慢,有些耽误时间。今后要加强动手操作能力的培养.
3.评课时老师们提的共同的建议是要尊重孩子的思维,不要急于打断孩子们的发言。确实是这样,当孩子的回答没让自己满意,就犯急,我们应尊重孩子的思维,允许孩子们有不同的想法,允许孩子们犯错。
真假分数的教学反思篇3
真分数和假分数是在学生已经学过分数的意义和分数与除法的关系的基础上进行教学的,课上充分发挥学生的主体作用,让学生在课前预习的基础上合作探究,引导学生在已经掌握的分数概念的基础上,通过观察、比较、抽象、概括,从特殊到一般,理解并掌握真分数、假分数的概念,自己得出判断和结论。
既然真分数和假分数是以分数意义为基础进行教学的`,那么这堂课离不开分数的意义,而五(下)的分数意义是用单位“1”来说明的,因此,我认为该内容的教学和分数的意义有着密切的关系。教材安排的例题也是利用学生对分数意义和分数单位的已有认识,通过在图形里涂色,引出对3/4、5/4的认识。再利用对假分数的初步认识,通过在图形里涂色表示6/4、7/4和8/4,9/4进一步丰富对假分数的认识。最后在此基础上,引导学生对比较上面例题中每个分数分子和分母的大小进行分类,形成并明确真分数和假分数的含义。
涂色是认识真分数假分数重要直观手段。小学生的认知往往建立在直观之上的,涂色学生的操作活动,操作的过程就是直观感知的过程。在涂3/4的过程中体会到:把一个圆看做单位“1”,平均分成4分,涂这样的3份是3/4。同样,涂4/4和5/4也是如此。
分数单位是认识真分数假分数的重要点。教材要求学生先在下面的图形中涂色表示5个1/4,然后要求学生用分数表示几分之几。对假分数的初步认识的锲子就是分数单位,1/4有1个1/4,3/4中有3个1/4,3个1/4就是3/4;4/4中有4个1/4,4个1/4就是4/4。照此推想5个1/4当然是5/4,5/4有5个1/4。
分类是形成真分数假分数的重要环节。在学生初步认识真分数假分数的基础上,引导学生对比较上面的每个分数分子和分母的大小进行分类,从而形成真分数和假分数的含义。
课后反思自己的课堂依然存在很多的不足:
1、教学能力还需提高
虽然我能及时给学生纠正错误,但还是显得有些急躁,没有让学生准确用数学语言表达,忽略了学生表达能力的培养。
2、自学指导争取做到精、简、细
本节课的自学指导虽然体现了自学方法、自学时间、自学内容,但感觉容量太大,问题过多,设计不够精细,学生在自学中容易忽略个别问题,而书中小精灵提的问题没有在指导中体现出来,造成学生对真分数和假分数的特征没有真正理解,只能照着书回答。
3、应变能力和调控能力还需提高。
真假分数的教学反思篇4
本节课的设计,是从学生已有的经验和知识背景出发,提供给学生自主探索的机会,让他们经历知识形成的过程,真正理解和掌握了数学的知识、思想和方法,同时获得广泛的数学活动经验,促进了学生的'发展。
在整个教学过程中,我充分体现了以学生为本的教学理念,在学生获得新知识的过程中,大胆放手,引导学生自主探索,突出知识的形成过程,使学生对新知识沿着理解、掌握、熟练的过程不断前进,从而获得最佳教学效果。
真分数和假分数的概念很重要,但概念的数学不能给学生死记硬背,教师如果创设一种动手操作的情境,把分数的意义、分数单位、分数的组成这些知识综合蕴含其中,既为真假分数的概念的理解埋下伏笔,也对学生的自主学习十分有利。
真假分数的教学反思篇5
这节课是一节概念课,是在学生初步建立了分数的概念之后,引导学生利用对分数意义和分数单位的认识,通过学生熟悉的涂色表示分数的活动,运用类比推理得到四分之四、四分之五这样的假分数,并通过例3的教学进一步丰富学生对假分数的感知。然后通过说理和讨论,帮助学生正确理解真分数和假分数的意义。
在练习第39页练一练第1题右边第3幅图时,有些学生认为涂色部分应该用八分之七来表示,这时我让不同见解的学生充分发表自己的'意见,并通过讨论明确图中是把一个长方形看作单位1,把单位1平均分成四份,每份是四分之一,涂色部分有7个四分之一,是四分之七,这样既有利于学生主动地完成对分数概念表征的修正和调整,又有利于培养学生思维的深刻性,发展数学思考。
真假分数的教学反思篇6
课前预习,所有学生都能根据真、假分数的概念及其特点对分数正确进行分类。但请学生用假分数表示图中的涂色部分或在数据上表示带分数则比较困难。
针对这一现状,我对例2的教案进行了改动。在教具方面,原先准备用挂图教学,但考虑到挂图一次性呈现所有图案,不便于学生感受到一个圆是单位“1”,最后改为用自制圆片作教具逐一展示。在教学设计方面,原先准备一开始就完全放手,让学生独立尝试用分数表示图中的涂色部分。现在,学生是在我的引导下,逐步完成三个假分数的学习。特别是第二幅图,针对学生的困惑“为什么这幅图不能用7/8来表示”质疑,使其明确单位“1”,并且掌握假分数7/4的含义。从第三幅图学生独立完成情况来看,这样的改动是成功的。
做一做第2题也是练习中的难点,需要老师辅导学生完成。在这里,我是这样指导的:我们把从0到1的线段长度看作单位“1”,请大家仔细观察把单位“1”平均分成了几份?
请大家把1/6、6/6、7/6、13/6在直线上表示出来。
指名板书,集体订正时问“为什么13/6在直线的这个点?”1/3表示什么意思?如果把单位“1”平均分成3份,1份是多长呢?你是怎样知道的?
请同学们将1/3、3/3、5/3在直线上表示出来。
为什么3/3和6/6在同一个点上?
问:请大家观察表示真分数的点和表示假分数的点分别在直线的哪一段上?
师:我们将分数与1进行比较共分为两类。一类是真分数,真分数都小于1。另一类是假分数,假分数等于1或者大于1。
这样分层练习,由易(分母是6的分数)到难(分母是3的分数),最后通过观察对比,对分数进行分类,形成正确的认知编码。
学生质疑:最小的`真分数为什么是1/n,而不是0/n?
整数可以看成是特殊的分数,分母是1的分数和分子是0分数,是一种特殊的分数,它与我们课本上所定义的分数(把单位“1”平均分成若干份,表示这样的一份或者几份的数)是不一样的。这两类特殊的分数是不能用课本上所说的分数的意义去解释的,它是靠分数的补充定义来说明的。有些老师认为0/12不是分数,是因为他们不了解分数的补充定义。再者,根据分数与除法的关系也可以说明0/12是分数。小学《数学》第十册第91页说:“分数与除法的关系可以表示成下面的形式:被除数÷除数=被除数/除数在整数除法中,除数不能是0。在分数中分母也不能是0。用a表示被除数,b表示除数,就是a ÷ b = a / b (b≠0) 。”由此我们不难看出:在整数除法中,被除数可以为0,这时表示成分数就是分子是0的分数,例如:0÷12 = 0/12,所以0/12是分数。第二:0/12是什么分数?上海教育出版社出版的《小学数学教师手册》第90页说:“在分数的原始定义中,没有包含分子为0的情况,但根据分数与除法的关系,可类推出0÷ a = 0 / a(a≠0),所以补充规定:0/a = 0 ( a≠0),并称之为零分数。在小学里,对零分数一般不作专门介绍,它在分数减法运算中自然出现。”由此我们可以知道:分子是0的分数(比如0/12)是一种特殊的分数,它们叫作零分数,这种分数一般不独立出现,多出现在分数减法计算的过程中。